

Ares I

First Stage: Powering Exploration

Bruce K. Tiller Ares First Stage Deputy

Agenda

- **♦** Introduction
- Schedules
- **♦** First Stage Progress to Date

Ares Family of Launch Vehicles

- Building on the legacy of the Space Shuttle and other NASA space exploration initiatives, the propulsion for the Ares I First Stage will be a Shuttle derived reusable solid rocket motor.
- Significant progress has been made to date by the Ares First Stage Team.
- This brief status provides an update on the design and development of the Ares First Stage propulsion system.

Building on 50 Years of Proven Experience

- Launch Vehicle Comparisons -

Ares I Acquisition Model

Ares I First Stage Overview

- ♦ Legacy motor casings, aft skirt
- New forward structures
 - Forward Skirt
 - Forward Skirt Extension
 - Aeroshell
 - Frustum
- Metal and composite materials
- Shuttle-derived five-segment solid rocket motor
 - Increased performance
 - Extensibility to Ares V

Thrust trace comparison: Shuttle versus Ares I

Ares I First Stage

Ares First Stage Upgrades

Added Segment

Burn rate lowered to meet Ares I requirements

Modifications to the motor were made to:

- Improve performance (thrust)
- Improve reliability
- Eliminate hazardous materials
- Replace obsolete materials

Propellant chamfers on aft and center segments

Wider throat and nozzle extension for increased

Insulation and liner formulations modified to eliminate Chrysotile fibers
Lay-up optimized to provide additional thermal protection

National Aeronautics and Space Administration

Ares I Lunar Mission Profile

Ares I First Stage DDT&E Schedule

First Stage Progress to Date

- Successful Preliminary Design Review Completed in June, 2008
- Major Test Programs
 - Parachute drop tests
 - Stage separation pyrotechnics
 - Development motor (scheduled for August, 25 2009)
- Several Major Items Manufactured
 - Ares I-X motor segments
 - Development motor (DM-1) Nozzle
 - DM-1 segments completed and motor installed in T-97 Test Stand
 - through insulation
 - Insulation lay-up has begun on DM-2 segments

Ares 1-X Support

- Completed all Hardware Acceptance Reviews
- Motor segments were completed and shipped to KSC in March 2009
- All hardware has been transferred to Ground Ops
- Hardware being mated at KSC

First Stage Thrust Oscillation

Status:

- June Program Review was completed with decision to baseline and implement Dual Plane (DP) Isolation
 - Baseline design established as a DP isolation system with the first plane between first stage and upper stage with a reference stiffness of 8M lb/in and an upper plane between US and Orion, on the US side of the interface with a reference stiffness of 1.2M lb/in
 - Upper Stage will begin design efforts to include the second plane isolator and coordinate interface design requirements with Orion

Four basic ways to attack problem:

- Reduce forcing function
- Detune system response away from forcing function frequency
- Actively create an opposing forcing function
- Passively absorb forcing function

Comparison of Mitigation Options

Working Baseline

Risk Mitigation Options

National Aeronautics and Space Administration

Full Scale Frustum Separation Test

Promontory, UT

Cluster Drop Test (CDT)-1

Yuma Proving Grounds, AZ

First Stage Accomplishments

Main Parachute Drop Test Yuma Proving Ground, AZ

Ares I-X Motor En Route to KSC Corinne, UT

Ares I-X Super Stack Kennedy Space Center, FL

Ares I-X C/A Mated to Aft Booster on MLP

DM-1 Segment Processing

Casting/X-ray Operations

DM-1 Fwd Segment Casting Promontory, UT

DM-1 Aft Segment Casting Promontory, UT

DM-1 C/A Segment CastingPromontory, UT

First Stage Accomplishments

Built-up Thrust Vector Control/Discrete Interface

Module

Cincinnati, OH

(B)

Thrust Oscillation Flexure Design (A) and Testing (B)
San Luis Obispo, CA

DM-1 Igniter Test Promontory, UT

DM-1 Installation into Test Stand Promontory, UT

DM-1 in T-97 Test Stand

Promontory, UT

National Aeronautics and Space Administration

Conclusion

- ♦ Ares First Stage design is on schedule
 - Avionics
 - Major Structures
 - Motor
 - Deceleration System
- Ares I-X hardware is complete and assembly at KSC is underway
 - Launch scheduled for October 31.
- Recovery system testing is on schedule
 - Drogue
 - Main chute
 - Cluster
- ◆ DM-1 static firing is scheduled for August 25, 2009

Development Motor #1 (DM-1)

August 25, 2009

